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Mathematical models of dynamics employing exterior calculus are shown to be mathe-
matical representations of the same unifying principle; namely, the description of a dynamic
system with a characteristic differential one-form on an odd-dimensional differentiable man-
ifold leads, by analysis with exterior calculus, to a set of characteristic differential equations
and a characteristic tangent vector which define transformations of the system. This princi-
ple, whose origin is Arnold’s use of exterior calculus to describe Hamiltonian mechanics and
geometric optics, is applied to irreversible thermodynamics and the dynamics of black holes,
electromagnetism and strings. It is shown that “exterior calculus” models apply to systems
for which the direction of change is given by a characteristic tangent vector and “conventional
calculus” models apply to systems whose direction of change is arbitrary. The relationship
between the two types of models is shown to imply a technical definition of equilibrium for a
dynamic system.
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1. Introduction

In dynamics, mathematical models that employ calculus use both the exterior cal-
culus of Cartan and the conventional calculus for quantitative description of natural phe-
nomena. So adequate is the agreement between the conclusions of these models and the
observables in the experimental domain that Hamiltonian mechanics, irreversible ther-
modynamics, geometric optics and classical field theories are technically understood
only with the geometric objects (e.g., differential forms) of exterior calculus. In con-
trast (in reference to calculus), quantum mechanics, reversible thermodynamics, physi-
cal optics and quantum field theories are not understood in this way, but rather with the
geometric objects (e.g., exact differentials) of conventional calculus. A survey of the
literature reveals a current period for applications of exterior calculus to dynamics that
is comparable to the beginning of the eighteenth century for applications of conventional
calculus.

It is shown that the above mathematical models of dynamics employing exterior
calculus are mathematical representations of the same unifying principle; namely, the
description of a dynamic system with a characteristic differential one-form on an odd-
dimensional differentiable manifold leads, by analysis with exterior calculus, to a set
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of characteristic differential equations and a characteristic tangent vector which define
transformations of the system. This principle, whose origin is Arnold’s [1] use of ex-
terior calculus to describe Hamiltonian mechanics and geometric optics, is applied to
irreversible thermodynamics and the dynamics of black holes, electromagnetism and
strings. It is shown that “exterior calculus” models apply to systems for which the di-
rection of change is given by a characteristic tangent vector and “conventional calculus”
models apply to systems whose direction of change is arbitrary. The relationship be-
tween the two types of models is shown to imply a technical definition of equilibrium
for a dynamic system.

2. Dynamics on differential one-forms

2.1. Differential one-forms

Let us begin by recalling some information about exterior calculus [1,2]. The exte-
rior derivative of a scalar function f (a differential one-form df ) has the same effect on
f as the exact differential df in conventional calculus; namely, it represents an infinites-
imal change in a function f induced by an arbitrary displacement of a point. However,
df is already a scalar, whereas df must be contracted with a tangent vector v to become
a scalar. The operation of contraction, denoted by df (v), thus removes the arbitrari-
ness in the direction of the displacement, where this direction is the same as that of
the tangent vector v (tangent vectors and the exterior derivative operator are denoted by
italicized boldface symbols and a boldface d, respectively). In this setting, consider an
n-dimensional differentiable manifold M with n local coordinates xk. At every point
of M,

(1) there exists a basis set of tangent vectors {∂/∂xk} for an n-dimensional vector
space of tangent vectors v belonging to tangent space TMx and

(2) there exists a basis set of one-forms {dxk} for an n-dimensional vector space
of one-forms df on tangent space TMx .

The tangent bundle TM(
⋃
x TMx) and cotangent bundle T ∗M(

⋃
x T
∗Mx , where

T ∗Mx – dual of TMx) have the natural structure of differentiable manifolds of dimension
2n, with local coordinates (xk,dxk(v)) and (xk,df (∂/∂xk)), respectively. A differen-
tial one-form dS on T ∗Mx is defined by the contractions dS(ξ) = df (v), where ξ ∈
T (T ∗Mx); hence,

dS = df
(
∂/∂xk

)
dxk. (1)

2.2. Dynamics

In Arnold’s treatment of Hamiltonian mechanics [1] and in the present examples
of dynamic systems, a temporal coordinate x0 is introduced as an additional local co-
ordinate for M, TM and T ∗M, thereby changing TM and T ∗M into odd-dimensional
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manifolds. As a result, an additional term b0dx0 is added to equation (1), where b0 is
defined to be a function of all (2n+1) coordinates; hence, b0 describes the phase flow in
this “extended” cotangent space and is called the characteristic function on the extended
cotangent bundle. Using bk for df (∂/∂xk) and �dx0 for b0dx0, we now have

dS = bkdxk +�
(
x0, . . . , xn, b1, . . . , bn

)
dx0. (2)

In Hamiltonian mechanics bk, � and x0 are represented by the momenta, Hamil-
tonian and time, respectively, but for the examples discussed in section 3, other variables
will play the role of bk , � and x0, as well as of S and xk . Hence, for the remainder of
this section we present the geometry of extended phase space in a general setting that
not only applies to geometrical optics and Hamiltonian mechanics (which defines this
geometry) but also to irreversible thermodynamics and the dynamics of strings, black
holes and electromagnetism.

Arnold’s procedure begins by taking the exterior derivative of dS to get the follow-
ing differential two-form:

dω = dbk ∧ dxk + [(∂�/∂xk)dxk + (∂�/∂bk)dbk] ∧ dx0, (3)

where ω ≡ dS. If xk and bk are to describe mappings of the temporal coordinate onto
the direction of the system phase flow, then xk and bk must be functions of x0 alone, and
vector ξ , where

ξ = (dbk/dx0
)
∂/∂bk +

(
dxk/dx0

)
∂/∂xk + ∂/∂x0 (4)

must satisfy at each point (bk, xk, x0) of the transformation, the equation

dω(ξ , η) = 0 (5)

for arbitrary tangent vector η at each point. This contraction of differential 2-form dω
is a mapping of a pair of vectors into an oriented surface, a mapping defined only if the
coordinates dxk/dx0 and dbk/dx0 of ξ have the values(

dxk/dx0
) = −(∂�/∂bk) and

(
dbk/dx

0
) = (∂�/∂xk). (6)

These equations define the relationship between coordinates (dbk/dx0, dxk/dx0, 1)
and coordinate values (∂�/∂xk , − ∂�/∂bk, 1) for tangent vector ξ at each point of the
transformation; thus, the arbitrariness in the coordinates of equation (4) is removed. The
characteristic tangent vector obtained by replacing the coordinates in equation (4) with
the coordinate values in equations (6), is called the vortex vector. This vector gives the
direction of the phase flow (the vortex direction), with the vortex lines (integral curves
of equations (6)) passing through points of a closed curve called the vortex tube. But
note that equations (6) can be derived in other ways, e.g., with the variation principle
or with the use of a symplectic manifold to describe Hamiltonian phase flows; however,
the vortex vector associated with these equations arises only through derivation with the
odd-dimensional approach in exterior calculus. Support for this approach is given by the
fact that it is implied by the multi-dimensional Stokes lemma.
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Before concluding this section, three points should be made. First, contraction of
dS with the vortex vector, now called R, gives

dS(R) = −bk(∂�/∂bk)+�, (7)

where dS(R) is the Lagrangian on extended tangent space (xk, dxk/dx0, x0). Secondly,
note that for equation (5) (where the exterior derivative of a characteristic differential
one-form is contracted on a pair of tangent vectors and set equal to the unique scalar
zero), the analysis refers to vortex tubes which do not end. For vortex tubes which end
in an elementary volume, dS(ξ , η) is set equal to a unique scalar other than zero. The
example of the source dependent Maxwell equations will illustrate the difference in pro-
cedure required for such vortex tubes. Lastly, it is noted that transformations of some
models for dynamic systems are conventionally represented by a path which is the pro-
jection of the system phase flow along the temporal coordinate axis, rather than the path
defined by the vortex vector. This representation has led to the belief that the direction of
the process for Hamiltonian mechanics and geometric optics is the direction of the time
axis, and that time reversal invariance of the characteristic differential equations implies
a reversible model for these systems. However, analysis with exterior calculus shows the
direction of the phase flow of Hamiltonian dynamic systems is the direction of the vortex
vector, a geometric object independent of representation along any axis. Thus, since the
time reversal operation cannot reverse this vector if it is not projected on the temporal
coordinate axis, the phase flow for such dynamic systems is irreversible [3]. This con-
clusion leads to the following proposal for all physical processes assumed to proceed in a
characteristic direction. Mathematical models of dynamics employing exterior calculus
are mathematical representations of the same unifying principle; namely, the description
of a dynamic system with a characteristic differential one-form on an odd-dimensional
differentiable manifold leads, by analysis with exterior calculus, to a set of characteristic
differential equations and a vortex vector which define transformations of the system.

2.3. Comparison with the variation principle

Before applying the foregoing principle to describe physical systems, it is use-
ful to define the relationship between this principle and the variation principle (Euler–
Lagrange, Hamilton). It is well known that once a consistent action functional is pro-
posed, the variation principle can be used to generate mathematical models such as
Hamilton’s equations, the Lorentz force law, Maxwell’s equations, Yang–Mills equation,
the Einstein equation of geometrodynamics and the quantum equations of Schroedinger,
Dirac and Klein–Gordon. The relationship between these principles begins by noting
that the quantity S of equation (2) is the action functional, whose increment I (∂�) is

I (∂�) =
∫
α′
L d4x −

∫
α

L d4x =
∫
∂�

L d4x, (8)

where L is the Lagrangian density. Integrals in the first line of equation (8) are evaluated
on path α and neighboring path α′ between the same two endpoints; the integral in the
second line is evaluated on the boundary ∂� of the surface � enclosed by α and α′.
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In the exterior calculus, instead of considering paths between two endpoints, we
consider the vortex lines forming a section of vortex tube between two distinct closed
curves encircling the tube. Instead of considering the increment as an integral along the
boundary ∂� of the surface defined by paths α′ and α, we consider the increment as an
integral along the boundary ∂σ of a section σ of the vortex tube, as given by

I (∂σ ) =
∫
∂σ

ω, (9)

where ω is the differential one-form dS. The variation δS is defined as the linear part
of the increment I (∂�); whereas, the exterior derivative dω is defined as the principal
bilinear part of the increment I (∂σ ). The variation condition δS = 0 is a representation
of dω(ξ, η) = 0 as given in equation (5).

In order to generate mathematical models of dynamic systems, the variation prin-
ciple requires variation of the coordinates to be zero at the endpoints and arbitrary in
between. Hence, due to this arbitrariness, when the variation principle is used to de-
velop mathematical models of certain dynamic systems, e.g., Hamiltonian dynamics, the
analysis does not make it clear that a vortex vector has been defined, and that some pre-
dictions of the model depend as much on this vector as on the fundamental equations for
the model. Of course the multi-dimensional Stokes’ lemma requires the boundary δ�
to be an infinitesimal square containing the vortex direction, but the variation method
does not calculate the vortex vector for this direction. This statement is supported by
the fact that although the integrand in the variation integral is a differential one-form,
variation techniques employ conventional calculus. In addition, the multi-dimensional
Stokes lemma implies the odd-dimensional approach, but the variation method uses an
even-dimensional approach since L is a function of 2n coordinates. Hence, although
this use of the variation principle requires the existence of extremal paths and predicts
equations to define functions of these paths, this principle leaves arbitrary the defini-
tion of the vortex vector for the system. Upon interpreting this arbitrariness as implying
equally probable directions and hence no preferred direction, then mathematical models
generated by the variation principle technically define systems at equilibrium.

3. Applications

The principle described in section 2 will be illustrated in table 1, with applications
to black hole mechanics and thermodynamics, and in table 2 with applications to elec-
tromagnetic and string field theories. For each category of dynamics, we have listed the
characteristic differential one-form, basis vectors in tangent space, characteristic differ-
ential equations, vortex vector and the Lagrangian. Although some of this information is
well known, by categorizing it in the form of this chart, the full impact of the following
principle emerges: the description of a dynamic system with a characteristic differential
one-form on an odd-dimensional differentiable manifold leads, by analysis with exte-
rior calculus, to a set of characteristic differential equations and a characteristic tangent
vector which define transformations of the system.
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3.1. Hamiltonian mechanics

Conventionally a symplectic manifold (M2n, ω2) is used to describe Hamiltonian
mechanics, where ω2 is a closed nondegenerate 2-form. In this case dω2(X,Y ,Z) = 0
for all ω2(X,Y ) �= 0 and for all tangent vectors Z. The present approach is due to
Arnold [1], who introduced an odd-dimensional approach with (M2n+1, ω1) to develop
a mathematical model for Hamiltonian mechanics, where (pi, qi) is a conjugate pair, t is
the time and H(qi, pi, t) is the characteristic function. In Arnold’s development it was
shown that the multi-dimensional Stokes’ lemma directly implies all the basic proposi-
tions of Hamiltonian mechanics. Contained in the present development is this approach
plus the interpretation of [3], that the vortex vector implies Hamiltonian mechanics is
irreversible. This conclusion comes from the proposition that irreversible thermody-
namics and Hamiltonian mechanics can be described by the same geometric formalism
and that the concept of irreversibility in thermodynamics and therefore in Hamiltonian
mechanics, is implied by the vortex vector. The uniqueness of the vortex vector is also
seen in the contraction of dSH with the vortex vector R to yield the correct Lagrangian
dSH(R), thereby giving an internal check on proposed characteristic differential one-
forms for physical systems.

3.2. Geometric optics

For geometric optics, dφ is the characteristic differential one-form, φ is the optical
path length (the “eikonal”), ω is the wave frequency, (ki, qi) is the conjugate pair, k is
the gradient of the optical path length, dqi and dt are basic differential one-forms for
the position and time, and frequency ω(qi, ki, t) is the characteristic function. Noted in
this case are the vortex vector and the Lagrangian L, with zero for the Lagrangian in
the case of a vacuum. The appearance of the zero has in some cases led to the omis-
sion of a variation term for geometric optics comparable to the variation term δ

∫
L dt in

Hamiltonian mechanics. In agreement with this omission the present results imply that
the contraction of differential one-form dφ with its vortex vector is zero for the vacuum
case only, where ω = ck and c is the speed of light. The vortex vector is a geometric
object giving the direction of change for the optical medium; hence, it is independent of
representation on the time axis. This is in sharp contrast to the predictions of the conven-
tional calculus, where the system motion is represented as the result of a projection of
the system path along the time axis and is thus subject to time reversal and the resulting
interpretations of time reversal invariance. The present results indicate the vortex vector
is a key component in the description of geometric optics.

3.3. Black hole mechanics

According to Bardeen, Carter and Hawkins (BCH) the first law of black hole me-
chanics [4] states that in the vacuum case the relationship between the variation of the
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mass M, angular momentum J and surface area A of two nearby stationary black holes
is given by

δM = �δJ + κ

8π
δA+ · · · , (10)

where � is the angular velocity and κ is the surface gravity. BCH formed an anal-
ogy of this law with the first law of thermodynamics by considering the relationship
between the variation of the energy (proportional to M), work terms (proportional to
�δJ ), temperature (proportional to κ) and entropy (proportional to A) of two nearby
thermal equilibrium states of a single black hole. Hawkins later discovered that the
physical temperature T of a black hole is given by κ/(2π) and, according to the analogy
with thermodynamics, the area A is 4Sbh, where Sbh is the physical entropy of a black
hole in general relativity. In the present model, we consider the exterior derivatives
corresponding to dM, dJ , dA and dS, to obtain

dM = �dJ + κ

8π
dA = �dJ + T dSbh, (11)

where we consider only the first two terms of δM in equation (10). Both parts of equa-
tion (11) now hold for nonstationary perturbations of a black hole, since differential one-
forms are used. Following the model system, κ is the characteristic function κ(�, J,A),
where � and J are the angular velocity and angular momentum, respectively. When
using T as the characteristic function T (�, J, Sbh), we have the same definitions for �
and J except that when κ is the characteristic function, � and J are mappings of A onto
the system phase flow, but when T is the characteristic function, � and J are mappings
of Sbh onto the system phase flow. New proposals in this case are the set of differential
equations, vortex vector and Lagrangian for the dynamics of black holes, results that
can be given the same physical interpretation as the model system. This analysis can be
compared to the following discussion of irreversible thermodynamics.

3.4. Irreversible thermodynamics

Story [3] used differential one-forms to develop a mathematical model for irre-
versible thermodynamics. The starting point for this development was to identify the
differential one-forms dU and dA corresponding to exact differentials for the internal
energy U and the Helmholtz energy A. T (V, P, S) is the characteristic function for dU
and S(V, P, T ) is the characteristic function for dA; V and P are conjugate pairs in
each case, where P , V , S and T are, respectively, the system pressure, volume, entropy
and temperature. When the technique for applying the proposed principle was utilized,
sets of differential equations and a vortex vector for each one-form were obtained. The
vortex vectors are interpreted as giving the direction of irreversible change for the system
in (P, V, S) and in (P, V, T ) space, respectively, where S and T are the corresponding
temporal coordinates. The differential equations are the irreversible counterparts of the
Maxwell relations in reversible thermodynamics. Contraction of differential one-forms
dU and dA on their respective vortex vectors gives the Lagrangian for each extended
tangent space.
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3.5. Classical electromagnetism

For classical electromagnetism, conventionally the exterior calculus formalism [2]
leading to Maxwell’s equations begins with two characteristic differential two-forms,
referred to as the Faraday two-form F and its dual, the Maxwell two-form ∗F , as given
by

F = Bidxj ∧ dxk + Eidxi ∧ dt (12)

and
∗F = Eidxj ∧ dxk − Bidxi ∧ dt, (13)

where B and E are magnetic and electric fields, x is the position and t is the time.
Instead of the foregoing even-dimensional manifold and 2-form (M2n, ω2) for a descrip-
tion of electromagnetism, an odd-dimensional manifold and one-form (M2n+1, ω1) are
introduced. This technique is analogous to Arnold’s use of (M2n+1, ω1) to obtain a
mathematical model for Hamiltonian mechanics rather than using a symplectic mani-
fold (M2n, ω2). In order to use the odd-dimensional approach for electromagnetism,
the isomorphism between tangent vector X and differential one-form dSF is employed.
This isomorphism is established by the contraction F(X), where dSF ≡ F(X) and
X = (dxi/dt)∂/∂xi + ∂/∂t;dS∗F is obtained with the contraction ∗F(X). From this
analysis it is noted that the coefficient of dxi for dSF is the Lorentz force fi divided
by the electric charge e; hence, the gradient of SF is the Lorentz force divided by the
charge. Since dS∗F resulted from the contraction of the dual of F with X, the quantity
[−B + (dx/dt) × E]i is designated as ∗fi/e. It should be noted that the coordinates of
the extended cotangent spaces in this case are (fi/e, xi, t) and (∗fi/e, xi, t), with cor-
responding basis vectors for the respective tangent spaces. Hence the relevant tangent
vectors are of the type ξ = (dfi/dt)∂/∂fi + (dxi/dt)∂/∂xi + ∂/∂t . Continuing, the
procedure of the model dynamic system was then employed for dSF , thereby generating
a set of characteristic differential equations and vortex vector. For dS∗F the vortex tubes
end in an elementary charge, rather than nowhere ending as for dSF ; thus, a modifi-
cation of the procedure of the model dynamic system was required. The unique scalar
obtained when following the procedure for this differential one-form is 4πω2∗J (X,Y ) for
arbitrary Y , rather than zero, where dω2∗J is the differential three-form ∗J (dual of charge
current J ) . Note that differential equations obtained in this way are mathematically
equivalent to the Maxwell equations in the following sense: If the inverse of the contrac-
tion F(X) is performed, F and, through duality, ∗F are obtained again; then, the exterior
derivatives dF and d∗F can be contracted on a triple of tangent vectors and set equal to
the unique scalars zero and 4π∗J (X,Y ,Z), respectively, thereby generating Maxwell’s
equations.

In the present analysis characteristic differential one-forms are used as a starting
point, thereby leading to vortex vectors, differential equations equivalent to Maxwell’s
equations and the use of the contractions dSF (R) and dS∗F (R) to obtain expressions for
the Lagrangian. Note that the predicted Lagrangian in table 2, obtained by the contrac-
tion dSF (R), is not the Lagrangian density [(E2−B2)/(8π)−ρφ+J ·A/c] used in the
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variation method to generate Maxwell’s equations. However, the present mathematical
model is supported by the fact that the mathematical equivalent of Maxwell’s equations
is generated by the demonstrated procedure, and this procedure correctly predicts the
Lagrangian for Hamilton mechanics and geometric optics. The use of these differential
equations is straightforward in the sense that the interpretation given to the vortex vec-
tor and differential equations of the model system can be given here. For the notation,
symbol ρ is the charge density, and A and φ are vector and scalar electric potentials.

Maxwell’s equations remain unchanged despite developments in quantum mechan-
ics and special and general relativity. The ease of inclusion of Maxwell’s equations into
the framework of the present development lends further support to the general applica-
bility of the proposed principle.

3.6. String mechanics

Following the work of Nambu, Mitra [5] studied the use of a differential 2-form for
the dynamics of weighted strings. In order to describe the sheet traced out in spacetime
by a moving string, Mitra introduced two independent variables σ and τ to replace the
single variable t for time, and used three independent variables for the momenta, where
this 2-form is given by

ω2
M = pidσ ∧ dxi + φidxi ∧ dτ + 1

2
πijdx

i ∧ dxj −Hdσ ∧ dτ, (14)

where

H = H(pi, φi, πij , xi);
σ, τ− two symbols for time, σ is considered as a parameter labeling different points of

the string and τ is the symbol for time as in Hamiltonian mechanics;
xi(σ, τ)− position coordinate;
pi(σ, τ)− momentum coordinate;
φi(σ, τ), πij (σ, τ)− two sets of momenta determined in terms of xi and pi by con-

straints; πij = −πji and so only n(n− 1)/2 of the πij are independent.

Following the approach taken for electromagnetic fields, ω2
M was represented as a

one-form by contracting ω2
M with tangent vector X, giving dSMN ≡ ω2

M(X), where

X = (∂xi/∂σ )∂/∂xi+ (∂pi/∂σ )∂/∂pi+ (∂φi/∂σ )∂/∂φi+
1

2
(∂πij/∂σ )∂/∂π ij +∂/∂σ.

(15)
In this way, a characteristic differential one-form dSMN for string dynamics was

obtained, where H(Pi, xi , τ ) is the characteristic function and (xi , Pi) is the conju-
gate pair. Use of the same procedure as for the model dynamic system resulted in a
set of differential equations and a vortex vector which describe irreversible transforma-
tions of the system defined by dSMN. The relevant tangent vector used in this case is
ξ = (dPi/dτ)∂/∂Pi + (dxi/dτ)∂/∂xi + ∂/∂τ . Differential equations generated by this
procedure are mathematically equivalent to those of Mitra in the following sense: the
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inverse of the contraction operation can be performed to obtain equation (14), then dω2
M

can be contracted on a triple of tangent vectors and set to zero, thus implying Mitra’s
equations.

This discussion is concluded by noting that the characteristic function, H(Pi,xi, τ )
= H(πij,xi, σ, τ ), is a function of eleven independent coordinates, as given by six πij ,
three xi , one σ and one τ . In other discussions of string theory, namely, in M-theory,
more advanced differential geometric techniques are used to represent a string as a two-
dimensional surface moving through an eleven-dimensional Calabi–Yau space. In the
present discussion, application of the proposed principle is an approach with characteris-
tic differential one-forms as fundamental; implications of the multi-dimensional Stokes’
lemma results in a set of characteristic differential equations, the vortex vector and the
Lagrangian for the dynamics of string membranes.

4. Conclusion

It has been shown that the use of exterior calculus in dynamics leads to a princi-
ple useful for deriving mathematical models of dynamic systems. Development of this
principle relied on the fact that all the basic propositions of the geometry of extended
phase space are implied by the multi-dimensional Stokes’ lemma, and that Hamiltonian
mechanics and irreversible thermodynamics are different mathematical representations
of this principle. Details of the principle showed that the characteristic direction of dis-
placements inherent to exterior calculus models implies irreversible changes of dynamic
systems, whereas the arbitrary direction of displacements inherent to conventional calcu-
lus models implies equilibrium. Once the principle was discussed in these general terms,
it was possible to demonstrate applications to a diverse set of phenomena, namely, ir-
reversible thermodynamics, black hole mechanics, and electromagnetic and string field
theories. For each of these applications, the characteristic differential one-form, the ba-
sic vectors in tangent space, the characteristic differential equations, the vortex vector
and the Lagrangian were synthesized.
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